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Unsharp Observables and Their Joint Measurement 
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It is shown that in the double-slit experiment, which is an unsharp path 
determination if represented by a generalized Luder operation, the interference 
term in the probability expression exactly corresponds to one of the marginals 
representing an unsharp interference observable in the realistic joint measurement 
presented by Busch. A complicated arrangement is presented to show a nontrivial 
joint triple measurement for spin-l/2 observables 

I. INTRODUCTION 

The complementarity of particle and wave aspects of quantum phenom- 
ena is the most striking feature of quantum mechanics, as revealed in the 
double-slit experiment, in which one may either observe a path or an interfer- 
ence pattern, but it is impossible to observe simultaneously a particle and a 
wave. It has been shown that this strict complementarity can be relaxed in 
the framework of an unsharp formalism of observables. Wooters and Zurek 
(1979) showed that one may observe the path with 95% confidence and still 
obtain very visible interference effects. Mittelstaedt et  al. (1987) presented 
a realization of this idea by means of a photon split-beam experiment, using 
a Mach-Zender interferometer. 

Busch ( 1985, 1986) presented a mathematical framework which provides 
joint measurement for complementary observables in two-dimensional Hilbert 
space. For a two-dimensional quantum system, noncommutivity of (sharp) 
observables is equivalent to their complementarity. Only in the POV measure 
formalism of observables can two complementary observables be simultane- 
ously measurable when the intrinsic unsharpness introduced into the observ- 
ables is sufficiently large. In the case of the much-debated issue of the BEII- 
CHSH inequality, it has been shown that in quantum mechanics inequalities 
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can be satisfied if the observables are sufficiently unsharp. In other words, 
this implies that the joint distribution of some observables not allowed by 
standard quantum mechanics may be possible in the POV formalism of 
quantum mechanics (Busch, 1985, 1986; Kar and Roy, 1995). 

Realistic joint measurements in the case of the double-slit experiment 
as well as for spin-l/2 observables have been presented. The basic idea of 
these experiments is to enlarge the state space of the system--as one actually 
does in any experiment by combining the system with the measuring device. 
All arrangements are composed of elements like beam splitters and prisms 
which are describable as ideal filters, and mathematically they are presented 
by projection operators, but their complicated arrangements give rise to effects 
representing various joint observables (Busch, 1987; Busch and Schroek, 
1989; de Muynck and Martens, 1990). 

Here we show that in the double-slit experiment, which is an unsharp path 
determination if represented by a generalized Luder operation, the interference 
term in the probability expression for the position of the particle on the screen 
corresponds to one of the marginals (representing an unsharp interference 
observable) of the realistic joint measurement for the double-slit experiment 
described by Busch. Realistic joint measurement for two spin-1/2 observables 
has been presented by using a split-beam experiment. In principle this experi- 
ment is realizable with neutron beams. This example can also be interpreted 
as a joint triple measurement for three complementary spin-1/2 observables. 
But this is a very special case, as four out of eight effects in the range of 
triple observables ( { F i j k } ,  i = 1, l , j  = 2, 2, k = 3, 3) are zero. In this paper 
we present a slightly more complicated arrangement (enlarging the state space 
by splitting the beam once again), which provides eight nonzero effects in 
the range of the triple observables. By suitably choosing the parameters of 
the experiment, we can select one of the marginals which measures spin 
(unsharply) in a desired direction. 

2. F O R M A L I S M  

Any linear operator A on two-dimensional Hilbert space can be written 
in the form 

A = so l  + a.<r, (s0, 13L) �9 C~4 (l) 

In particular, effects on the two-dimensional Hilbert space F (0 --< F <-- /) 
can be written as 

F = �89 + X. o-) (2) 

with 0 -< ~, Ilhll -< 1, 

F = -,/E(k) (3) 
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where 

E(k) = �89 + h.o-) (4) 

For IlXll = 1, E(h) is a projection operator and it represents ordinary sharp 
spin properties and will be denoted by P(h). The requirement that the 'spin- 
up' and 'spin-down' results should be complementary to each other, i.e., 
= I - F = F ( - h ,  ~), implies "y = 1, i.e., only E(h) may be spin properties. 

The spectral decomposition of E(h) is 

E(X) = �89 + Ilxll)e(~.) + �89 - I IXl I )P( -~ . )  (5) 

The eigenvalues have the following interpretation: 
I r = �89 + [[h[[) > ~- 

is the reality degree of property P(h); and 
__l 

u = � 8 9  - I l X l l )  < 2 

is the unsharpness of property p(h). 
The generalized Luder measurement (Busch, 1986) ~bL of the unsharp 

spin property E(h) is defined as 

~)L D = E(h)t/2DE(h)I/2 + E(-h)I /2DE(-h)  1/2 (6) 

where D is the initial state of the system to be measured. 
As mentioned in the Introduction, any two spin-l/2 observables are 

complementary. For unsharp cases, however, they may allow joint measure- 
ment (Busch, 1985). In general, two effects Fl and F2 are coexistent if and 
only if there exist four effects (Fi2, FI~, FT2, FIT_) which satisfy (Kraus, 1983) 

Fi = Fl2 + Fli, F2 = Fi2 + FT2 (7) 

FT = FT2 + FH, F~ = Fli  + FH 

Applying this criterion for spin, it has been shown that two unsharp spin 
properties E(kl) and E(h2) of the form (4) are coexistent if and only if 

�89 + x211 + �89 - x211 <- 1 (8) 

so any pair of  directions hi and h2 can be made coexistent by introducing a 
sufficiently large unsharpness. Similarly the triple E(h0,  E(h2), and E(h3) 
can be coexistent if 

hi 2 + h22 + h32 --< l (9) 

3. JOINT MEASUREMENT IN DOUBLE-SLIT EXPERIMENT 

The double-slit experiment can be interpreted in terms of conditional 
probability (Beltrametti and Cassinelli, 1981). To switch over to unsharp path 
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measurement in the double-slit experiment, we first describe the conditional 
probability interpretation of this experiment. 

In the double-slit experiment the screen S~ has two slits E~ and E2. Let 
us imagine a free particle traveling toward the screen S~ in the direction of 
the x axis with constant velocity v. We are interested in the probability 
distribution of the position of the particle on the screen $2 (behind the screen 
SO. Let P[~] be the density operator representing the initial state of the 
particle. Let P(E) be the projection-valued measure that the particle is confined 
in the Borel set E. Let IlP(Ei)q, ll(i -- 1, 2) g: 0. We are interested in the 
conditional probability that the y coordinate of the particle has value in the 
set E of the screen $2 at time t = "r, given that it was localized in the set F~ 
U E2 of the screen SL at time t = 0. We write 

I IP(E;)~II  
CE, = II P(E, U E2)~ II 

and 

P( Ei)t~ 

q,E, - II P(E,)O II 

The conditional probability is given by 

p(P(E), t = "r/P(EL t0 E2), t = 0) 

Tr[P(EI tO E2)P[~]P(Et U E2)U~P(E)Ur 
= (10) 

Tr[P(EI U E2)P[~]] 

The intervals El and E2 are disjoint, and hence P(EI 1.9 E2) = P(EO + 
P(E2), then 

P(E~ U E2) ~ = lIP(El U E2)~[I(CE,d~e, + CE2~E2) (11) 

Then 

p(P(E), t = x/P(El U E2), t = 0 

= (Ce,~e, + Ce2~E21U~P(E)U~ICe,~e, + CE2~E2) (12) 

The interference term in this expression for the probability distribution is 

2CelCe2 J U'rlIJEIU'rOE2 dy 

which is different from zero for "r ~ 0. In fact, although ~E, and t~e2 have 
disjoint supports, U~ (the unitary operator) spreads them over the whole y axis. 

On the other hand, if the path determination is done sharply, the condi- 
tional probability will be given by 
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p(P(E), t = "riP(El) or P(E2), t = 0) 

Tr[ { P(EI)P[t~]P(EO + P(E2)P[t~]P(Ez) } U~t P(E)U~] 
Tr[(P(EO + P(E2))P[d~]] 

= ICll2flUrt~EtlZdy+ ,C2,2f,u**E2,2dy (13) 

So there is no interference term. 
For an unsharp path determination of a microparticle in the double-slit 

experiment we consider the two effects 

Ft = (1 - r + ~P(E2), F2 = (1 - r + cP(E,) (14) 

with 0 -< r ---< 1/2. The F; corresponds to an unsharp measurement correspond- 
ing to localization in the sets Ei. 

In the last expression for the conditional probability distribution if we 
replace P(E~) by Fa and P(E2) by F2 and the Luder operation by the generalized 
Luder operation, we get 

p(P(E), t = r/FI or F2, t = 0) 

Tr[{Fi u2P[O]F, 1/2 q.. F21r2p[tll]F21/2} U~ Ip(E)Ur] 
= (15) 

Tr[(Ft + F2)P[~]] 

Writing the spectral expansion of  F~ and F2, we find the interference term 
in the last probability expression 

r 1 U,~E,U,d~e2 dy 4 ,r 

Obviously for ~ = 0, i.e., for a sharp path determination, there is no interfer- 
ence term and for ~ = 1/2, i.e., for a randomized path determination, the 
interference is full. It has been shown that the double-slit experiment can be 
fully described in terms of two-dimensional Hilbert space and the path and 
interference observables are described by two unit vectors orthogonal to 
each other in the Poincar6 sphere. In this representation our (unsharp) path 
observable FI will be given by 

FI = �89 + (2e - l)z" cr] (16) 

provided the unit vector z represents a standard path observable on the 
Poincar6 sphere. In a realistic joint measurement of path and interference in 
the double-slit experiment described by Busch (1987) the two marginals Ej 
and E2 (representing unsharp path and interference observables, respectively) 
out of four joint observables are given by 

El = � 8 9  (2~/ -- l)z.o'],  Ez = � 8 9  x/~/(2~/ - l)x.or] (17) 
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where ~/is the transparency of the mirror employed in the split-beam experi- 
ment. Now it is interesting to note that the blurred interference term in the 
last expression for the probability distribution exactly corresponds to the 
unsharp interference observable E2 when �9 = ~/. For �9 = ~/ = 1/2, E2 is a 
projection operator representing a sharp interference observable. 

4. REALISTIC JOINT TRIPLE MEASUREMENT FOR SPIN-l/2 
OBSERVABLES 

In this section we present a more generalized model where all eight 
effects in the range of the triple observable are nonzero and one of the 
marginals can be chosen in an arbitrary direction depending on the parameters 
of the apparatus. To achieve this, we have to find an arrangement yielding 
eight possible mutually exclusive outcomes. The basic idea is to enlarge the 
state space of the system, as is done in any experiment, by combining the 
system with the measuring device. 

This complicated arrangement is shown in Fig. 1. The incoming beam 
of spin-I/2 particles is split according to orthogonal polarization states ~b+ 
(eigenstates of the prism observable) which are singled out by prism P. The 
two partial beams are again split by two transparent mirrors with transparency 
"yI (say). Then the two pairs of four partial beams are combined and split 

T_| 

/ L-YO 

P 
Fig. 1. Setup for a joint measurement of three spin-l/2 observables. The incoming beam is 
split by means of a prism P. The two partial beams are again split by two transparent mirrors 
with transparency Yi. Then four partial beams, taken two at a time, are recombined and sent 
through transparent mirrors with transparency y. The outgoing beam polarizations are analyzed 
by means of prisms C, D, E, and F. 
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again by a y-transparent mirror into two two-polarization-measuring devices 
consisting of  a prism of  pairs o f  detectors (C+, D+) and (E+, F+). 

Let the initial state of polarization be 

d o = cdo+ + ei• - -  c 2 ) l / 2 d o -  (18) 

Then the state evolution as shown in Fig. 1 is given by 

Lbo = do • tp ---+ t~ = cdo+ ~) Is) + eix(1 --  c2)l/2do- (~ I~) 

= cdo+ | [~/]//Is,,) + (1 - ~/x)l/Zlst,)] 

+ ei+(l - c2)lado_ | [3,V21Xb) + (1 - yl)u21~`'}] 

= (1 - "u | ISb} + ei+(l -- c2)Uzdo- | 

+ 3,V2[cdo+ | Is,,} + el+(1 - cZ)l/zdo_ | I~b)] (19) 

Now the four path states ]Sa),  I Sb),  IS`'), and I~b) are developed in terms of 
the orthogonal detector path states Iv), IV), I w), and IF): 

iv) = ~ - ~)[Isb) + , / ~ l x 0 ]  

Iv)  = , / ~ [ I  sO - , / ( I  - y )  l~`')] 

I w) = , f f i  - y) [ tso)  + ~ 1 ~ o ) 1  

IF) = vc~[Is~) - ~ - y) l~o)] (20) 

Then using the last equation, we can write 

= ~ - y,)['rr,.do | Iv) + rrA, | Iv)] 

+ v/-~l['rrcdo | I w) + 'rredo | I F)] (21) 

where 

�9 ,c = ~ e t d o + l -  , / i -~_x ,  ordo-I 
"Ira ~/YP[do-I + ~/1 - yP[do+] (22) 

Here P[ .  ] is a one-dimensional projection operator projecting on the vector 
in the third bracket. 

On the preparation t~ let one measure the projection-valued observables 
constituted by 

C i |  D j@P[v] ,  E k @ P [ F ] ,  F ,@P[V] ( i , j , k , l =  + , - )  

The above eight projections are pairwise orthogonal and thus commutative, 
even though Ci, Dj, etc., are not generally commutative. 

The probabilities of the outcomes Ci, D.i, etc., are given by 

( ~ l C i  | P[w]lr  = v/%l('rrcdolCil'rrcdo) = (do l Cildo) (23) 



1286 Kar 

where the effect  Ci is given by 

C, = ~l~r~C;rrc 

Similarly, 

Dj = (1 - "~l)'lTtc-Oj'lTc 
Ek = "Ym'trtd-Ek'trd 

Ft = ( l  - "y,)'n'~L'trd 

Let  the projection operators  C• D• etc., be given by 

~_ = 3 I t  +__ c - ~ ] ,  ~• = 311 ___ d .  ~] 

~'• = �89 + e" crl, F•  = 311 +_ f .  (r] 

(24) 

(25) 

with c, d, e, f all unit  vectors.  Identifying the prism observables  with the 
polar direction o f  the Poincar6 sphere, 

P[qb+] = 311 + z" o'1 (26) 

and identifying all eight effects  o f  (24) with the eight effects  in the range o f  
the triple observable  Fijk, we can write 

C +  = I + "yl~-C0 [1 + C+" O'] = F I 2  3 

C-  = "yllco [l -t- c- .or] = F~3 

D+ = (1 - ~l)3d~[l  + d+'(r]  = FI53 

D_ = (1 - "), l)3dff [l  + d _ ' t r ]  = FT23 

E + =  I + ~l-~eo[l + e+-(r] = F l ~  

E_ = "yl3eff[l + e _ .  (r] = FT2$ 

F+ = (1 - "yO3f~[l + f+ .tr] = Fl2~ 

F_ = (1 - 3q)�89 + f - . o - 1  = F,-~3 (27) 

where 

c~ = �89 __ (2"v- l)c3] 

c• = [2cf f ] - l (~2x/~ , ( l  - ~)ct,  ~-2~/~/(1 - ~/)c2, (23' - 1) __+ c3) r (28) 

We can write similar expressions for d• e~-, etc. 
Let  us now see under what  condit ions the marginals of  all these effects 

can represent an unsharp spin property with the form given by 
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�89 + a.~r] 

Now the marginal FI is given by 

where 

w i t h  0 <  l a l  ~ 1 

FI = Fi23 + F~23 + FI~  + F,73 

1 + = ~-[(f~ + d~- + 3q{c~- + ed- - f d -  - dd})I  + f l ' o ' ]  (29) 

f l  = ['Y,c~ c+ + (1 - "y i ) f~ f  + + "yle~e + + (1 - ~h)d~-d +] (30) 

Putting in the values of Co, c • etc., we get 

F t = � 8 8  + (23, - l ) ( d  3 - f 3 )  + 3'1(23' - 1)(c3 + f 3  - e3 (31)  

- d3)l + �89 "o" 

Similarly, for the marginal effect F2 

F2 = �88 - (2~/ - l)(d3 + f3) + "yl(2"y - 1)(c3 + f3 + e3 (32) 
+ d3)] + �89 

wher e  

f2 = [~hC~ c+ + (1 - "yOf~f  + + ~heoe + (1 - "yOdod-]  (33) 

F3 = "rr,*.'rrc = �89 + (2"y - l)z" o'] (34) 

Now for F~, F2, and F3 to represent unsharp spin properties, at least one of 
the following conditions should be satisfied: 

(a) c3 = d3 = e3 = f3 = 0. 
(b )~ / l  = 1 ,  c3 = d3 = e3 = f 3 .  

For condition (a), the two unsharp observables Ft and F2 will be repre- 
sented in the Poincar6 sphere by vectors f~ and f2 which are in the xy plane. 

But if condition (b) is satisfied with c3 4= 0, then one of them (here F 0  
will be represented by a vector with nonzero z component, i.e., (f0z = c3 #= 
0. So, unlike the example presented by Busch, in our case Ft and F2 are not 
both forced to represent spin measurement along vectors in the xy plane. So 
this model represents a joint triple measurement of three unsharp observables 
whose corresponding vectors lie along the z axis, in the xy plane, and in 
space depending on the parameters of the apparatus employed. 

5.  D I S C U S S I O N  

In a double-slit experiment some kind of unsharp path determination 
implies the realization of a joint measurement for both path and interference 
observables. We use a generalized Luder operation because it disturbs the 
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initial state minimally. It is interesting to note that the interference term in 
this case exactly corresponds to the (unsharp) interference observable in the 
realistic joint measurement in Busch (1987). 

Busch showed that introduction of a relative phase shift in the two 
partial beams has the effect of  rotating the vectors in the unsharp joint 
observables about the z axis. To avoid complications we do not introduce a 
phase shift. Finally, it should be noted that an experiment for a joint triple 
measurement is in principle realizable with neutron beams. An inhomoge- 
neous magnetic field may serve as a prism, and a homogeneous magnetic 
field, in the case of  polarized partial beams, as a mirror. 
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